วันพฤหัสบดีที่ 18 กันยายน พ.ศ. 2557

IP version 6

อินเทอร์เน็ตโพรโตคอล รุ่นที่ 6 หรือ IPv6


ปัจจุบันนี้อินเทอร์เน็ตเข้ามามีบทบาทสำคัญในชีวิตประจำวันของเรามากยิ่งขึ้นและมีเทคโนโลยีต่างๆมากมายที่จะต้องใช้อินเทอร์เน็ตในการเชื่อมต่อถึงกัน ดังในปัจจุบันเราจะเห็นได้ว่าแม้กระทั่งโทรศัพท์มือถือก็มีอินเทอร์เน็ตเป็นส่วนประกอบหนึ่งรวมไปถึงอุปกรณ์อิเล็กทรอนิกส์ต่างๆ

กลไกสำคัญในการทำงานของอินเทอร์เน็ต คือ อินเทอร์เน็ตโพรโตคอล (Internet Protocol) ซึงส่วนประกอบที่สำคัญของอินเทอร์เน็ตโพรโตคอลได้แก่ ไอพีแอดเดรส (IP address) ที่ใช้ในการอ้างอิงเครื่องคอมพิวเตอร์และอุปกรณ์เครือข่ายต่างๆ บนอินเทอร์เน็ตทั่วโลก เปรียบเสมือนการใช้งานโทรศัพท์ในการติดต่อสื่อสารกัน จะต้องมีหมายเลขโทรศัพท์เพื่อให้อ้างอิงผู้รับสายได้ คอมพิวเตอร์ทุกเครื่องในอินเทอร์เน็ตก็ต้องมีหมายเลขไอพีแอดเดรส ที่ไม่ซ้ำกับใคร

ปัจจุบันเราใช้ไอพีแอดเดรส (IP address) บนมาตรฐานของอินเตอร์เน็ตโพรโตคอลคือ Internet Protocol version 4 (IPv4) ซึ่งเราใช้เป็นมาตรฐานในการส่งข้อมูลในเครือข่ายอินเทอร์เน็ตตั้งแต่ปี ค.ศ. 1981 ทั้งนี้การขยายตัวของเครือข่ายอินเทอร์เน็ตในช่วงที่ผ่านมามีอัตราการเติบโตอย่างรวดเร็ว

นักวิจัยเริ่มพบว่าจำนวนไอพีแอดเดรส (IP address) ของ IPv4 กำลังจะถูกใช้หมดไป ไม่เพียงพอกับการใช้งานอินเทอร์เน็ตในอนาคตจนคาดคะเนกันว่าหมายเลขไอพีแอดเดรสของ IPv4 จะมีไม่พอกับความต้องการในปี ค.ศ. 2010 และหากเกิดขึ้นก็หมายความว่าเราจะไม่สามารถเชื่อมต่อเครือข่ายเข้ากับ ระบบอินเทอร์เน็ตที่เพิ่มขึ้นได้อีก ดังนั้นคณะทำงาน IETF (The Internet Engineering Task Force) ซึ่งตระหนักถึงปัญหาสำคัญดังกล่าว จึงได้พัฒนาอินเทอร์เน็ตโพรโตคอลรุ่นใหม่ขึ้น คือ รุ่นที่หก (Internet Protocol version 6; IPv6) เพื่อทดแทนอินเทอร์เน็ตโพรโตคอลรุ่นเดิม โดยมีวัตถุประสงค์ IPv6 เพื่อปรับปรุงโครงสร้างของตัวโพรโตคอล ให้รองรับไอพีแอดเดรส (IP address) จำนวนมาก และปรับปรุงคุณลักษณะอื่นๆ อีกหลายประการ ทั้งในแง่ของประสิทธิภาพและความปลอดภัยรองรับระบบแอพพลิเคชั่น (application) ใหม่ๆ ที่จะเกิดขึ้นในอนาคต และเพิ่มประสิทธิภาพในการประมวลผลแพ็กเก็ต (packet) ให้ดีขึ้น ทำให้สามารถตอบสนองต่อการขยายตัวและความต้องการใช้งานเทคโนโลยีบนเครือข่ายอินเทอร์เน็ตในอนาคตได้เป็นอย่างดี

Internet Protocol version 6 (IPv6) บางครั้งเรียกว่า Next Generation Internet Protocol หรือ IPng ถูกออกแบบมาให้ทำงานได้ดีในเครือข่ายที่มีประสิทธิภาพสูง (เช่น Gigabit Ethernet, OC-12,ATM) และในขณะเดียวกันก็ยังสามารถทำงานในเครือข่ายที่มีประสิทธิภาพต่ำได้ (เช่น Wireless Network) นอกจากนี้ยังได้มีการจัดเตรียมแพลตฟอร์มสำหรับฟังก์ชันใหม่ๆ ของอินเตอร์เน็ตซึ่งเป็นที่ต้องการใช้ในอนาคต ความแตกต่างระหว่าง IPv6 และ IPv4 มีอยู่ 5 ส่วนใหญ่ๆ คือ ไอพีแอดเดรส (IP address) และการเลือกเส้นทาง (Addressing & Routing) ความปลอดภัย อุปกรณ์แปลแอดเดรส (Network Address Translator : NAT) การลดภาระในการจัดการของผู้ดูแลระบบ และการรองรับการใช้งานในอุปกรณ์พกพา (Mobile Devices)

ประโยชน์หลักของ IPv6 และเป็นเหตุผลสำคัญของการเริ่มใช้ IPv6 ได้แก่ จำนวน ไอพีแอดเดรส ที่เพิ่มขึ้นอย่างมากมายมหาศาลเมื่อเปรียบเทียบกับจำนวน ไอพีแอดเดรส เดิมภายใต้ IPv4 address มี 32 บิต ในขณะที่ IPv6 address มี 128 บิต ความแตกต่างของจำนวน ไอพีแอดเดรส มีมากถึง 296 เท่า





รูปที่ 1 รูปแบบของแอดเดรส IPv4 และ IPv6

หมายเลขแอดเดรสของ IPv6 มีลักษณะประกอบไปด้วย กลุ่มตัวเลข 8 กลุ่ม เขียนขั้นกั้นด้วยเครื่องหมาย “ : ” โดยแต่ละกลุ่มคือเลขฐาน 16 จำนวน 4 ตัว (16 bit)





รูปที่ 2 ตัวอย่างหมายเลขแอดเดรส IPv4 และ IPv6

ด้วยความยาวที่เพิ่มขึ้นของ IPv6 address ทำให้ไม่สะดวกที่จะใช้ตัวเลขฐานสิบ สามารถเขียนแบบย่อได้ โดยมีเงื่อนไขดังนี้

1.หากมีเลขศูนย์ด้านหน้าของกลุ่มใดสามารถจะละไว้ได้

2.หากกลุ่มใดเป็นเลขศูนย์ทั้ง 4 ตัว (0000) สามารถเขียนแทนด้วย “ 0 ”

3.หากกลุ่มใดกลุ่มหนึ่ง (หรือหลายๆกลุ่มที่ตำแหน่งติดกัน) เป็นเลขศูนย์ทั้งหมด สามารถจะละไว้ได้โดยใช้เครื่องหมาย “ :: ” แต่จะสามารถทำลักษณะนี้ได้ตำแหน่งเดียวเท่านั้นเพื่อไม่ให้เกิดความสับสน





เปรียบเทียบ Header ระหว่าง IPv4 และ IPv6

เฮดเดอร์ (Header) ของข้อมูลแบบ IPv6 แพ็กเก็ต (packet) ถูกออกแบบมาให้มีขนาดคงที่ที่ 40 ไบต์ (bytes) และมีรูปแบบที่ง่ายที่สุดเท่าที่จะทำได้ โดยเฮดเดอร์ จะประกอบด้วยตำแหน่งต่างๆที่จำเป็นต้องใช้ในการประมวลผลแพ็กเก็ต (packet) ที่เราเตอร์ (router) หรืออุปกรณ์เลือกเส้นทางทุกตัวเท่านั้น ส่วนตำแหน่งที่อาจจะถูกประมวลผลเฉพาะที่ต้นหรือปลายทางหรือที่เราท์เตอร์บางตัว จะถูกแยกออกมาไว้ที่ส่วนขยายของเฮดเดอร์ (extended header)


รูปที่ 4 การเปรียบเทียบ Header ระหว่าง IPv4 และ IPv6

จะเห็นว่าเฮดเดอร์ IPv6 ถึงแม้จะมีขนาดยาวกว่า IPv4 แต่จะดูเรียบง่ายกว่าเฮดเดอร์ของ IPv4 มาก ทั้งนี้หากพิจารณาเฮดเดอร์ของ IPv6 เทียบกับของ IPv4 จะสามารถเปรียบเทียบความแตกต่างได้ดังนี้






ตารางที่ 1 เปรียบเทียบโครงสร้างทางเทคนิคของ IPv6 และ IPv4


ตำแหน่งข้อมูลที่ตัดออก


Header length ถูกตัดออกไป เพราะเฮดเดอร์ของ IPv6 มีขนาดคงที่ที่ 40 ไบต์ (bytes) ทำให้ประสิทธิ ภาพโดยรวมของการประมวลผลแพ็กเก็ตดีขึ้น ไม่เสียเวลาในการคำนวณขนาดของเฮดเดอร์

• Identification, Flag, Flag Offset, Protocol,Options, และ Padding ถูกย้ายไปอยู่ใน ส่วนขยายของเฮดเดอร์ (extended header)เพราะถือว่าเป็นส่วนที่ไม่จำเป็นต้องประมวลผลในทุกๆ เราเตอร์

• Header Checksum ถูกตัดออกเพราะว่าซ้ำซ้อนกับฟังก์ชันของโพรโตคอลในชั้นที่อยู่สูงกว่า อีกทั้งเป็นการเพิ่มประสิทธิภาพของการประมวลผลด้วย เพราะ Checksum จะต้องมีการคำนวณใหม่ที่เราเตอร์เสมอหากตัดออกก็จะลดภาระงานที่เราเตอร์ไปได้

ตำแหน่งข้อมูลที่ปรับเปลี่ยน

• Total Length เปลี่ยนมาเป็น Payload lengthเพื่อระบุขนาดของ Payload ในหน่วยไบต์ดังนั้นขนาดของ Payload สูงสุดจะเป็น 65,535 ไบต์ (bytes)

• Time-To-Live (TTL) ของ IPv4 เปลี่ยนมาเป็น Hop Limit เพราะ TTL ระบุเวลาที่แพ็กเก็ตจะวนเวียนอยู่ในอินเทอร์เน็ต (หน่วยเป็นวินาที)โดยระบุว่าแต่ละเราเตอร์ต้องลด TTL ลงอย่างน้อย 1 วินาที เราเตอร์จึงลด TTL ครั้งละ 1 หน่วยเสมอแม้ว่าจะใช้เวลาประมวลผลแพ็กเก็ตน้อยกว่านั้น ทำให้ไม่ตรงกับความหมายของ TTL ดังนั้นจึงถูกเปลี่ยนเป็น Hop Limit เพื่อให้ตรงกับความหมายจริงๆ ซึ่งเหมาะสมและง่ายต่อการประมวลผล

• Protocol เปลี่ยนมาเป็น Next Header ซึ่งใช้เป็นตัวบอกว่า extended header ตัวถัดไปเป็นเฮดเดอร์ ประเภทไหน เช่น ถ้าเป็น extended header ชนิด IPsec จะมีค่า Next Header = 51

ตำแหน่งข้อมูลที่เพิ่ม

• Flow Label ใช้ระบุลักษณะการไหลเวียนของทราฟฟิกระหว่างต้นทางกับปลายทาง เนื่องจากในแอปพลิเคชั่นหนึ่ง สามารถมีทราฟฟิกหลายประเภท (เช่น ภาพ เสียง ตัวอักษร ฯลฯ) และทราฟฟิกแต่ละประเภทมีความต้องการที่แตกต่างกัน Flow Label จึงมีไว้เพื่อแยกประเภทของทราฟฟิกและเพื่อให้เราเตอร์รู้ว่าควรปฏิบัติต่อทราฟฟิกแต่ละประเภทแตกต่างกัน

• Type-of-Service (TOS) เปลี่ยนมาเป็น Traffic Class ซึ่งมีจำนวนบิตมากกว่า สามารถแบ่งกลุ่มและระดับความสำคัญของแต่ละแพ็กเก็ตละเอียดมากขึ้น เพื่อที่เราเตอร์จะจัดลำดับขั้นการส่งแพ็กเก็ตให้เหมาะสม


การปรับเปลี่ยนระบบเครือข่ายจาก IPv4 สู่ IPv6

การปรับเปลี่ยนในช่วงแรก การใช้งาน IPv6 อาจอยู่ในวงแคบ ดังนั้นเราต้องการเทคนิคเพื่อเชื่อมต่อเครือข่ายที่เป็น IPv6 เข้ากับเครือข่าย IPv4หรือเครือข่าย IPv6 อื่น เทคนิคการทำงานร่วมกันระหว่าง IPv4 และ IPv6 แบ่งออกเป็น 3 ประเภทด้วยกันคือ


1. Dual Stacks เป็นการใช้งาน IPv4 และ IPv6 stack ควบคู่กันไป ภายในอุปกรณ์ตัวเดียวกัน Dual Stacks สามารถใช้ได้ทั้งที่ end host ที่เซิร์ฟเวอร์และที่อุปกรณ์เครือข่าย (network device) เช่น เราท์เตอร์ Dual Stacks เป็นทางออกที่ง่ายที่สุดสำหรับเครือข่ายที่ต้องการเริ่มใช้งาน IPv6 และถูกใช้อย่างแพร่หลายมากที่สุดในปัจจุบัน





รูปที่ 5 การทำงานร่วมกันระหว่าง IPv4 และ IPv6 แบบ Dual Stacks

2. Tunneling เป็นการสร้างท่อในการรับส่ง IPv6 ผ่านไปบนเครือข่าย IPv4 การทำอุโมงค์ โดยทั่วไปเป็นการ encapsulate แพ็กเก็ตข้อมูลที่ต้องการส่งไว้ในอีกแพ็กเก็ตหนึ่ง เนื่องจากแพ็กเก็ตที่อยู่ภายในไม่สามารถถูกส่งไปยังปลายทางได้ จึงต้องอาศัยการห่อหุ้มด้วยแพ็กเก็ตอื่น การทำอุโมงค์เพื่อใช้งาน IPv6 นั้นก็เช่นกันใช้เมื่อเครือข่ายเชื่อมต่ออยู่ด้วยไม่สนับสนุน IPv6 จึงจำเป็นต้องหุ้มแพ็กเก็ต IPv6 ไว้ภายใต้แพ็กเก็ต IPv4 อีกที









รูปที่ 6 การทำ IPv6 in IPv4 packet encapsulation

การทำ Tunnel สำหรับเครือข่าย IPv6 ต้องสร้างเส้นทางการติดต่อระหว่างเครื่องที่ใช้หมายเลข IPv6 ผ่านเครือข่ายที่ใช้หมายเลข IPv4 โดยเกตเวย์ (Gateway) ของเครือข่ายของเครื่องที่ใช้หมายเลข IPv6 จะทำหน้าที่ห่อหุ้มแพ็กเก็ต IPv6 ไว้ใน IPv4 ก่อนจะส่งไปในเครือข่ายอินเทอร์เน็ตที่สนับสนุนการใช้หมายเลข IPv4 เท่านั้น โดยระหว่างทางจะดูหมายเลขต้นทางและปลายทางที่อยู่ในส่วนหัวของแพ็กเก็ต IPv4 เท่านั้น จะไม่สนใจส่วนที่อยู่ภายในเมื่อส่งไปถึงปลายทางเกตเวย์จะถอดแพ็กเก็ต IPv4 ออกให้เหลือแต่แพ็กเก็ต IPv6 แล้วส่งไปยังเครื่องที่ใช้หมายเลข IPv6 ต่อไป









รูปที่ 7 การเชื่อมต่อเครือข่ายแบบอุโมงค์ IPv6-over-IPv4 Tunnel

3. Translation เป็นวิธีที่ใช้กับการสื่อสารข้ามเครือข่าย เช่น โหนดจากเครือข่าย IPv4 ต้องการคุยกับเซิร์ฟเวอร์ในเครือข่าย IPv6 หรือโหนดที่เป็น IPv6 ต้องการคุยกับเซิร์ฟเวอร์ที่เป็น IPv4 ซึ่งจะเป็นกรณีที่ต่างไปจากการใช้งาน Dual Stacks และ Tunnel การทำ Translation พูดง่ายๆ ก็คือ การแปลงข้อมูลไปมาระหว่างข้อมูลในรูปแบบของ IPv4 และ IPv6 การแปลงข้อมูลนี้สามารถทำได้สองแบบ

แบบแรก คือการแปลงที่ end host โดยเพิ่ม translator function เข้าไปใน protocol stack โดยอาจอยู่ที่ network layer หรือ socket layer ก็ได้

แบบสอง คือการแปลงที่ network device โดยจะต้องใช้ gateway ทำหน้าที่เป็น IPv6 – IPv4 และ IPv4 – IPv6 translator อยู่ที่ทางออกที่มีการเชื่อมต่อระหว่างเครือข่าย IPv6 และ IPv4










รูปที่ 8 โครงสร้างของ Network Stacks เพื่อการแปลงข้อมูลระหว่าง IPv6 และ IPv4



















รูปที่ 9 แผนภาพแสดงการปรับเปลี่ยนระบบจาก IPv4 ไปสู่ IPv6



ความสามารถพิเศษของ IPv6 ที่เหนือกว่า IPv4


1. Management 

การตั้งค่าและปรับแต่งระบบเครือข่าย ในปัจจุบันมีความซับซ้อนมาก IPv6 จึงถูกออกแบบมาให้สนับสนุนการติดตั้งและปรับแต่งระบบแบบอัตโนมัติ(auto configuration) เพื่ออำนวยความสะดวกให้กับการจัดสรรปรับเปลี่ยน IP address (Address Renumbering) การเชื่อมต่อกับผู้ให้บริการหลายราย (Multi homing) และแม้แต่การจัดการเครือข่ายแบบ Plug-and-play

2. Broadcast/Multicast/Anycast

ใน IPv4 ได้มีการจัดสรร IP Address ส่วนหนึ่งเพื่อเป็น Broadcast address แต่ในความเป็นจริงแล้วการสื่อสารแบบ Broadcast เป็นสิ่งที่ไม่มีความจำเป็นและสิ้นเปลือง Bandwidth โดยเปล่าประโยชน์ Multicast เป็นการสื่อสารที่มีประสิทธิภาพมากกว่าและเริ่มเป็นที่นิยม IPv6 จึงถูกออกแบบมาให้รองรับ Multicast group address และตัด Broadcast address ออก

นอกจากนี้ IPv6 ยังเพิ่มความสามารถในการสื่อสารแบบ Anycast โดยอนุญาตให้อุปกรณ์มากกว่า 1ชิ้นได้รับการจัดสรร IP address เบอร์เดียวกันซึ่งหมายความว่าอุปกรณ์ชิ้นใดก็ได้สามารถตอบสนองต่อข้อมูลที่ส่งมาที่ Anycast address นั้นๆ

3. Mobile IP

IPv6 สนับสนุนการใช้งานอินเทอร์เน็ตแบบเคลื่อนที่เช่นเดียวกับ IPv4 แต่ว่าการใช้งาน Mobile IPv6 นั้นมีประสิทธิภาพมากกว่า Mobile IPv4 ตรงที่สามารถส่งข้อมูลผ่านเส้นทางที่สั้นที่สุดโดยไม่ต้องพึ่งอุปกรณ์ตัวกลางในการส่งต่อข้อมูล(Route Optimization)และสามารถใช้ IPSec ในการป้องกันการโจรกรรมแพ็กเก็ตกลางทาง

4. Security

เราเตอร์และอุปกรณ์เครือข่ายทุกตัวในเครือข่าย IPv6 ถูกกำหนดให้รองรับการใช้งาน IPSec นอกจากนี้ยังมีการกำหนด Security Payload สองประเภทคือ Authentication Payload และ Encrypted Security Payload เพื่อสนับสนุนการรับส่งข้อมูลที่มั่นคงปลอดภัย ภายใต้ Network Layer แทนที่จะพึ่ง Application Layer เหมือนในเครือข่าย IPv4












รูปที่ 10 แสดงระบบ Security ที่ใช้ IPv6

5. Virtual Private Network (VPN )

แต่เดิมในเครือข่าย IPv4 การให้บริการ VPN ทำได้โดยใช้ IPSec เพื่อเข้ารหัสข้อมูลใน Network Layer ทั้งหมด ซึ่งจะติดปัญหาหากเครือข่ายต้นทางหรือปลายทางมีการทำ Network Address Translation (NAT) เพราะการเข้ารหัสจะต้องสิ้นสุดก่อนถึงจุดหมายปลายทางสำหรับเครือข่าย IPv6 ไม่มีปัญหาดังกล่าว เพราะไม่มีความจำเป็นต้องใช้ NAT อีกต่อไป นอกจากนี้ยังสามารถใช้ Extended Header ที่เรียกว่า Authentication Header และ Encapsulated Security Payload เพื่อรองรับการใช้งาน VPN แบบปลอดภัย

6. Quality-of-Service

IPv6 ถูกออกแบบมาให้สนับสนุนการรับประกันคุณภาพของบริการตั้งแต่เริ่ม โดยจะเห็นได้จากตำแหน่ง Flow Label และ Traffic Class ในเฮดเดอร์ ถึงแม้ว่าในเฮดเดอร์ของ IPv4 จะมีตำแหน่ง Type-of-Service แต่ไม่มีการใช้อย่างแพร่หลาย เนื่องจากไม่มีมาตรฐานในการกำหนดค่าและเราเตอร์บางตัวเท่านั้นที่สามารถประมวลผลตำแหน่ง ToS ได้ ที่ผ่านมา IPv4 มักปล่อยให้ Layer ข้างล่างจัดการเรื่อง QoS แทน เช่น ผ่านเทคโนโลยี MPLS

7. Maximum Transfer Unit (MTU)

MTU ขั้นต่ำในเครือข่าย IPv4 คือ 576 ไบต์ และถูกเพิ่มเป็น 1280ไบต์ ในเครือข่าย IPv6 การเพิ่มความยาวขั้นต่ำของMTU นี้จะช่วยให้การส่งข้อมูลในเครือข่าย IPv6 มีประสิทธิภาพมากขึ้น โดยช่วยลดสัดส่วนของข้อมูลเฮดเดอร์ต่อข้อมูลทั้งหมด



คุณสมบัติของ IP v.6 ที่เหนือกว่า IP v.4

IP V.6 มีคุณสมบัติที่เหนือกว่า IP V.4 มากมาย ซึ่งสามารถสรุปคร่าวๆ ได้ 5 หัวข้อ ได้แก่ เรื่องการกำหนดแอดเดรส (Addressing), การปรับแต่งระบบ (Configuration), การรับส่งขอมูล (Data Delivery), การค้นหาเส้นทาง (Routing) และความปลอดภัย (Security) ซึ่งรายละเอียดแสดงในตารางที่ 2



















ตารางที่ 2 ข้อดีของ IPv6 ที่เหนือกว่า IPv4



อุปกรณ์ที่สนับสนุน IPv6

เนื่องจากจำนวน IP address ของ IPv6 นั้นมีมากมาย อุปกรณ์ต่าง ๆ จึงสามารถที่จะมีหมายเลข IP address ของตัวเองทำให้สามารถเชื่อมต่ออินเทอร์เน็ตได้ อีกทั้งประสิทธิภาพและข้อดีต่าง ๆ ของ IPv6 จะทำให้เกิดโปรแกรม อุปกรณ์ และการใช้งานใหม่ๆ ขึ้นมาอีกมากมายในอนาคต อาทิเช่น Mobile IPv6, 3G Mobile Broadband, Mobile IP Broadcast, VoIP, P2P Game เป็นต้น แม้กระทั่งอุปกรณ์เครื่องใช้ไฟฟ้าภายในบ้านก็จะมี IP address ประจำทำให้แยกแยะและควบคุมได้ เกิดเป็นเครือข่ายภายในบ้าน (Home Network) เช่น ควบคุมการเปิด-ปิดอุปกรณ์เครื่องใช้ไฟฟ้าภายในบ้านผ่านเครือข่ายอินเทอร์เน็ต โทรทัศน์ในอนาคตจะเป็นแบบ interactive คือ สามารถโต้ตอบกับผู้ชมได้ สัญญาณกันขโมยสามารถที่จะส่ง real-time IPv6 packet ไปแจ้งตำรวจหรือสายตรวจที่อยู่ใกล้บ้านเราที่สุดได้ อีกตัวอย่าง คือ Internet Car โดยการใช้ IPv6 ร่วมกับ GPS เพื่อบอกตำแหน่ง เนื่องจากประสิทธิภาพการใช้ GPS ในเมืองจะต่ำเพราะตึกสูงๆ จะบังสัญญาณ ดังนั้นการใช้ร่วมกับ wireless/mobile Internet จะดีกว่า ตัวอย่างสุดท้าย เป็นการใช้งานโดยการติดตั้งกล้อง Surveillance IPv6 camera เพื่อดูแลความปลอดภัยหรือดูสภาพการจราจร กล้องเหล่านี้สามารถเป็น Server ได้ในตัว เก็บข้อมูลได้และติดต่อกันได้โดยตรงเนื่องจากมี IP address จริงเป็นของตัวเอง เป็นต้น



สถานการณ์ในปัจจุบัน

ถึงแม้จะเป็นที่ยอมรับกันโดยทั่วไปว่าสักวันหนึ่งอินเทอร์เน็ตจะต้องปรับเปลี่ยนไปใช้ IPv6 แต่ความตื่นตัวในการปรับเปลี่ยนได้เกิดขึ้นช้ากว่าที่คาดหมายกันไว้ สาเหตุสำคัญ อาจเนื่องมาจากทัศนคติที่ว่า ตราบใดที่อินเตอร์เน็ตยังไม่ขาดแคลนไอพีแอดเดรส IPv6 ก็ยังคงเป็นสิ่งฟุ่มเฟือยและยังไม่จำเป็นมากนัก ถึงกระนั้นก็ตาม IPv6 เริ่มได้รับการยอมรับมากขึ้น เพราะผู้ให้บริการอินเทอร์เน็ตต่างตระหนักดีว่า ไม่ช้าก็เร็ว ปัญหาการขาดแคลนไอพีแอดเดรสจะต้องมาถึง และเมื่อถึงเวลานั้นผู้ที่มีความพร้อมมากกว่าจะเป็นผู้ได้เปรียบ นอกจากนั้น IPv6 ยังเป็นทางออกที่ถาวรทางเดียวในการแก้ปัญหานี้

การผลักดันให้เกิดการนำ IPv6 ไปใช้งานจริง มีจุดศูนย์กลางอยู่ที่ทวีปยุโรปและเอเชียเป็นหลัก ส่วนทวีปอเมริกาเหนือนั้นยังไม่มีจุดยืนที่ชัดเจน สาเหตุที่สำคัญประการแรกคือ ในปัจจุบันทวีปอเมริกาเหนือมีส่วนแบ่งของไอพีแอดเดรสอยู่ถึงร้อยละ 70 ของไอพีแอดเดรสทั้งหมดในโลก จึงไม่เป็นที่น่าแปลกใจที่ทวีปนี้ยังไม่เห็นความจำเป็นของ IPv6 ในทางตรงกันข้าม ทั้งยุโรปและเอเชียต่างพบปัญหาการมีไอพีแอดเดรสไม่พอกับจำนวนผู้ใช้อินเทอร์เน็ต สาเหตุประการที่สอง สืบเนื่องมาจากเทคโนโลยีโทรศัพท์เคลื่อนที่ยุคที่สาม (3G wireless technology) ทั้งยุโรปและเอเชีย ต่างมีความต้องการสูงทางเทคโนโลยี 3G ซึ่งเทคโนโลยีนี้ทำให้เกิดความต้องการไอพีแอดเดรสที่เพิ่มขึ้น ดังนั้นเราจึงพบว่าผู้ผลิตฮาร์ดแวร์ ซอฟต์แวร์ และองค์กรที่ทำหน้าที่กำหนดมาตรฐานต่างๆ ในทวีปยุโรปและเอเชียต่างส่งสัญญาณที่จะแก้ปัญหาการขาดแคลนไอพีแอดเดรส หรืออีกนัยหนึ่งการตอบรับต่อ IPv6 อย่างจริงจัง

ในส่วนของประเทศไทย ศูนย์เทคโนโลยีอิเล็กทรอนิคส์และคอมพิวเตอร์แห่งชาติ นับว่าเป็นผู้นำในการให้บริการเชื่อมต่อเครือข่าย IPv6 กับต่างประเทศผ่านการทำ IPv6-over-IPv4 tunnel และการทำ 6to4 relay นอกจากนี้ ศูนย์เทคโนโลยีอิเล็กทรอนิคส์และคอมพิวเตอร์แห่งชาติ ยังได้รับความร่วมมือจากหลายมหาวิทยาลัยและบริษัทผู้ให้บริการอินเทอร์เน็ต ทำให้เกิดเครือข่าย IPv6 เพื่อการทดสอบภายในประเทศ (Thailand IPv6 Testbed) ซึ่งมีการเชื่อมต่อด้วยเทคนิคที่หลากหลาย เช่น dual stacks, IPv6-over-IPv4 tunnel และ Native IPv6 เป็นต้น (รายละเอียดสามารถดูได้จาก http://www.ip6.nectec.or.th) ในปัจจุบันได้มีการก่อตั้งคณะทำงานระดับประเทศขึ้นภายใต้ชื่อ Thailand IPv6 Forum หรือโครงการความร่วมมือพัฒนาและส่งเสริมการใช้เครือข่าย IPv6 ซึ่งเป็นความร่วมมือระหว่างหน่วยงานวิจัย ผู้ให้บริการอินเทอร์เน็ต และผู้ผลิตหรือตัวแทนจำหน่ายฮาร์ดแวร์ระบบเครือข่าย ซึ่งนับว่าเป็นนิมิตรหมายอันดีถึงความตื่นตัวของประเทศไทยในการรับมือกับ IPv6






วันพุธที่ 17 กันยายน พ.ศ. 2557

ยุคของคอมพิวเตอร์


ยุคของคอมพิวเตอร์


ยุคของคอมพิวเตอร์ สามารถแบ่งได้เป็น 5 ยุค ดังนี้ คือ
คอมพิวเตอร์ยุคที่ 1
อยู่ระหว่างปี พ.ศ. 2488 ถึง พ.ศ. 2501 เป็นคอมพิวเตอร์ที่ใช้หลอดสุญญากาศซึ่งใช้กำลังไฟฟ้าสูง จึงมีปัญหาเรื่องความร้อนและไส้หลอดขาดบ่อย ถึงแม้จะมีระบบระบายความร้อนที่ดีมาก การสั่งงานใช้ภาษาเครื่องซึ่งเป็นรหัสตัวเลขที่ยุ่งยากซับซ้อน เครื่องคอมพิวเตอร์ของยุคนี้มีขนาดใหญ่โต เช่น มาร์ค วัน (MARK I), อีนิแอค (ENIAC), ยูนิแวค (UNIVAC)

มาร์ค วัน
      
                                                            
คอมพิวเตอร์ยุคที่ 2
คอมพิวเตอร์ยุคที่สอง อยู่ระหว่างปี พ.ศ. 2502 ถึง พ.ศ. 2506 เป็นคอมพิวเตอร์ที่ใช้ทรานซิสเตอร์ โดยมีแกนเฟอร์ไรท์เป็นหน่วยความจำ มีอุปกรณ์เก็บข้อมูลสำรองในรูปของสื่อบันทึกแม่เหล็ก เช่น จานแม่เหล็ก ส่วนทางด้านซอฟต์แวร์ก็มีการพัฒนาดีขึ้น โดยสามารถเขียนโปรแกรมด้วยภาษาระดับสูงซึ่งเป็นภาษาที่เขียนเป็นประโยคที่คนสามารถเข้าใจได้ เช่น ภาษาฟอร์แทน ภาษาโคบอล เป็นต้น ภาษาระดับสูงนี้ได้มีการพัฒนาและใช้งานมาจนถึงปัจจุบัน

คอมพิวเตอร์ยุคที่ 3
 คอมพิวเตอร์ยุคที่สาม อยู่ระหว่างปี พ.ศ. 2507 ถึง พ.ศ. 2512 เป็นคอมพิวเตอร์ที่ใช้วงจรรวม (Integrated Circuit : IC) โดยวงจรรวมแต่ละตัวจะมีทรานซิสเตอร์บรรจุอยู่ภายในมากมายทำให้เครื่องคอมพิวเตอร์จะออกแบบซับซ้อนมากขึ้น และสามารถสร้างเป็นโปรแกรมย่อย ๆ ในการกำหนดชุดคำสั่งต่าง ๆ ทางด้านซอฟต์แวร์ก็มีระบบควบคุมที่มีความสามารถสูงทั้งในรูประบบแบ่งเวลาการทำงานให้กับงานหลาย ๆ อย่าง
                                                             
คอมพิวเตอร์ยุคที่ 4
คอมพิวเตอร์ยุคที่สี่ ตั้งแต่ปี พ.ศ. 2513 จนถึงปัจจุบัน เป็นยุคของคอมพิวเตอร์ที่ใช้วงจรรวมความจุสูงมาก(Very Large Scale Integration : VLSI) เช่น ไมโครโพรเซสเซอร์ที่บรรจุทรานซิสเตอร์นับหมื่นนับแสนตัว ทำให้ขนาดเครื่องคอมพิวเตอร์มีขนาดเล็กลงสามารถตั้งบนโต๊ะในสำนักงานหรือพกพาเหมือนกระเป๋าหิ้วไปในที่ต่าง ๆ ได้ ขณะเดียวกันระบบซอฟต์แวร์ก็ได้พัฒนาขีดความสามารถสูงขึ้นมาก มีโปรแกรมสำเร็จให้เลือกใช้กันมากทำให้เกิดความสะดวกในการใช้งานอย่างกว้างขวาง

                                                                        

คอมพิวเตอร์ยุคที่ 5

คอมพิวเตอร์ยุคที่ห้า เป็นคอมพิวเตอร์ที่มนุษย์พยายามนำมาเพื่อช่วยในการตัดสินใจและแก้ปัญหาให้ดียิ่งขึ้น โดยจะมีการเก็บความรอบรู้ต่าง ๆ เข้าไว้ในเครื่อง สามารถเรียกค้นและดึงความรู้ที่สะสมไว้มาใช้งานให้เป็นประโยชน์ คอมพิวเตอร์ยุคนี้เป็นผลจากวิชาการด้านปัญญาประดิษฐ์ (Artificial Intelligence : AI) ประเทศต่างๆ ทั่วโลกไม่ว่าจะเป็นสหรัฐอเมริกา ญี่ปุ่น และประเทศในทวีปยุโรปกำลังสนใจค้นคว้าและพัฒนาทางด้านนี้กันอย่างจริงจัง


ความรู้ที่ได้รับ ที่ได้เข้าร่วมโครงการ ผู้ บริหาร ยุคใหม่ เข้าใจ ทันภัยกฏหมาย IT

ความรู้ที่ได้รับ ที่ได้เข้าร่วมโครงการ ผู้ บริหาร ยุคใหม่  เข้าใจ ทันภัยกฏหมาย IT



ได้รู้ว่า ผู้บริหารที่ดีต้องเป็นผู้ใฝ่รู้ รักความก้าวหน้า หมั่นศึกษาค้นคว้าเพื่อพัฒนาตนเองให้รู้เท่าทันการเปลี่ยนแปลง เนื่องจากสังคมปัจจุบันเป็นสังคมแห่งการเรียนรู้ เปิดกว้างสำหรับทุกคน บุคลากรในโรงเรียนส่วนใหญ่มีการศึกษาอยู่ในระดับปริญญาตรี ผู้บริหารจึงควรพัฒนาตนเองในด้านการศึกษาให้สูงขึ้น
และผู้ บรรยายยังเล่าเรื่อง การใช้ "ชื่อ" และ "นามแฝง" 
คือในโลกอินเตอร์เน็ตเปิดช่องให้ผู้ใช้สามารถตั้งชื่อปลอม นามแฝง โกหกสถานะและอายุได้อย่างง่ายดาย ในกรณีที่ใช้ "นามแฝง" ที่ตั้งขึ้นมาเองหรือไม่เกี่ยวข้องกับผู้ใดและไม่ได้เข้าไปเขียนข้อความให้ร้ายผู้อื่น
คงไม่มีปัญหา แต่ถ้านำชื่อของบุคคลอื่นมาใช้โดยเจ้าตัวไม่ได้รับรู้ จนทำให้เกิดความเสียหายจะต้องรับผิด อาจถูกฟ้องร้องเรียกค่าเสียหายได้ ซึ่งทำให้เราได้เข้าใจ และรับรู้เข้าทันถึงเหตุการ์ในปัจุบันค่ะ
พฤติกรรม การใช้ "ชื่อ" และ "นามแฝง" 
ฐานความผิด: มาตรา 5 ปรับไม่เกิน 10,000.- จำคุกไม่เกิน 6 เดือน 




วันอังคารที่ 16 กันยายน พ.ศ. 2557

ระบบเครือข่ายไร้สาย (Wireless LAN) สถาปัตยกรรมของระบบเครือข่าย




ระบบเครือข่ายไร้สาย (Wireless LAN)

ในปัจจุบันนี้โลกของเราเป็นยุคแห่งการติดต่อสื่อสาร เทคโนโลยีต่าง ๆ เช่น โทรศัพท์ เป็นสิ่งจำเป็นต่อการดำเนินธุรกิจและการใช้ชีวิตประจำวัน ความต้องการข้อมูลและการบริการต่าง ๆ นั้นมีความจำเป็นสำหรับนักธุรกิจ ซึ่งเทคโนโลยีที่สนองต่อความต้องการเหล่านั้นมีมากมาย อย่างเช่น โทรศัพท์มือถือ เครื่องคอมพิวเตอร์ Notebook เครื่องปาล์ม ได้ถูกนำมาใช้เป็นอย่างมาก และผู้ที่น่าจะได้รับประโยชน์จากการใช้ระบบเครือข่ายไร้สายมีมากมาย ไม่ว่าจะเป็นในวงการธุรกิจ การศึกษา และการแพทย์
ระบบเครือข่ายไร้สาย (WLAN= Wireless Local Area Network) คือระบบการสื่อสารข้อมูลที่นำมาใช้ทดแทน หรือเพิ่มต่อกับระบบเครือข่ายแลนใช้สายแบบดั้งเดิมโดยใช้การส่งคลื่นความถี่วิทยุในย่านวิทยุ RF และคลื่นอินฟราเรดในการรับและส่งข้อมูลระหว่างคอมพิวเตอร์แต่ละเครื่องผ่านทางอากาศ ทะลุกำแพง เพดาน หรือสิ่งก่อสร้างอื่น ๆ โดยปราศจากความต้องการของการเดินสาย และนอกจากนั้นระบบเครือข่ายไร้สายก็ยังมีคุณสมบัติครอบคลุมทุกอย่างเหมือนกับระบบแลนใช้สาย และที่สำคัญก็คือการที่มันไม่ต้องใช้สาย ทำให้การเคลื่อนย้ายการใช้งานทำได้โดยสะดวก ไม่เหมือนระบบแลนแบบใช้สายที่ต้องใช้เวลา และการลงทุนในการปรับเปลี่ยนตำแหน่งการใช้งานเครื่องคอมพิวเตอร์



รูปแบบการเชื่อมต่อของระบบเครือข่ายไร้สาย

1. Peer-to-Peer (ad hoc mode)
รูปแบบการเชื่อมต่อแลนไร้สายแบบ Peer to Peer เป็นการเชื่อมต่อแบบโครงข่ายโดยตรงระหว่างเครื่องคอมพิวเตอร์ โดยเครื่องคอมพิวเตอร์แต่ละเครื่องนั้นจะมีความเท่าเทียมกัน สามารถทำงานของตนเองได้ และขอใช้บริการเครื่องอื่นได้ จึงเหมาะสำหรับนำมาใช้งานเพื่อจุดประสงค์ด้านความรวดเร็ว หรือติดตั้งได้โดยง่ายเมื่อไม่มีโครงสร้างพื้นฐานที่จะรองรับ ตัวอย่างเช่น ในศูนย์ประชุมหรือการประชุมที่จัดนอกสถานที่

2. Client/Server (Infrastructure mode)
ระบบเครือข่ายไร้สายแบบ Client/Server (Infrastructure mode) มีลักษณะการรับส่งข้อมูลโดยอาศัย Access Point (AP) หรือเรียกว่า "Hot Spot" ทำหน้าที่เป็นสะพานเชื่อมต่อระหว่างระบบเครือข่ายแบบใช้สาย กับคอมพิวเตอร์ลูกข่าย (Client) โดยจะกระจายสัญญาณคลื่นวิทยุเพื่อรับ-ส่งข้อมูลเป็นรัศมีโดยรอบ ซึ่ง AP 1 จุด สามารถให้บริการเครื่องลูกข่ายได้ถึง 15-50 อุปกรณ์ เหมาะสำหรับการนำไปขยายเครือข่าย หรือใช้ร่วมกับระบบเครือข่ายแบบใช้สายเดิมใน Office ห้องสมุด หรือในห้องประชุม เพื่อเพิ่มประสิทธิภาพในการทำงานให้มากขึ้น
3. Multiple access points and roaming
เป็นการเพิ่มจุดการติดตั้ง AP ให้มากขึ้น เพื่อให้การรับส่งสัญญาณในบริเวณของเครือข่ายขนาดใหญ่เป็นไปอย่างครอบคลุมทั่วถึง
4. Use of an Extension Point
มีคุณสมบัติเหมือนกับ Access Point แต่ไม่ต้องผูกติดไว้กับเครือข่ายไร้สาย

5. The Use of Directional Antennas
ระบบแลนไร้สายแบบนี้เป็นแบบใช้เสาอากาศในการรับส่งสัญญาณระหว่างอาคารที่อยู่ห่างกัน โดยการติดตั้งเสาอากาศที่แต่ละอาคาร เพื่อส่งและรับสัญญาณระหว่างกัน

มาตรฐานของเครือข่ายไร้สาย

การสื่อสารกับเครื่อข่ายไร้สายก็คือ มาตรฐาน IEEE 802.11 เริ่มประกาศใช้ตั้งแต่ปี ค.ศ.1997 ซึ่งมาตรฐานที่เกิดขึ้นยังมีข้อจำกัดในด้านเทคโนโลยี ซึ่งกำหนดระบบการส่งสัญญาณด้วยความเร็วที่ 2 Mbps และได้มีการพัฒนาเรื่อยมาโดยมีส่วนย่อยอยู่ด้วยกันถึง 9 ส่วน คือ a, b, c, d, e, f, g, h และ I โดยแต่ละชนิดนั้นก็จะมีลักษณะหรือมาตรฐานของรายละเอียดต่างกันไป ซึ่งหลังจาก 9 กลุ่มย่อยดังนี้ กลุ่มตัวอักษรจะไม่เรียงว่า a จะเก่ากว่า b และ c แต่จะขึ้นอยู่กับว่ามาตรฐานของกลุ่มใดทำเสร็จก่อนก็จะนำออกเปิดตัวก่อน โดยดูได้จากตารางข้างล่างซึ่งได้ทำการเปรียบเทียบมาตรฐานต่างๆ เอาไว้ ดังนี้


มาตรฐาน
802.11
802.11a
802.11b
802.11g
เริ่มประกาศใช้
July 1997 กรกฎาคม 2540
September 1999 กันยายน 2542
September 1999 กันยายน 2542
Expected in 2002 2545
แถบความถี่ที่สามารถใช้ได้
83.5 MHz
300 MHz
83.5 MHz
83.5 MHz
ช่วงความถี่ที่สามารถใช้ได้
2.4-2.4835 GHz
5.15-5.35 GHz
5.725-5.825 GHz
2.4-2.4835 GHz
2.4-2.4835 GHz
อัตราการส่งข้อมูลต่อช่อง
1,2 Mbps
6,9,12,18,24,36,48,54 Mbps
1,2,5.5,11 Mbps
6,9,12,18,24,36,48,54 Mbps
ความเข้ากันได้
802.11
Wi-Fi5
Wi-Fi
Wi-Fi at 11 Mbps and below

Wireless LANs Technology

เทคโนโลยีในการส่งสัญญาณมีอยู่ 2 ประเภท ได้แก่ ประเภทที่ใช้สัญญาณคลื่นความถี่วิทยุที่ และประเภทที่ใช้สัญญาณอินฟราเรดในการติดต่อรับส่งข้อมูล
  1. ประเภทที่ใช้สัญญาณคลื่นความถี่วิทยุ
    • Narrow Band Technology เป็นระบบวิทยุแบบความถี่แคบ เป็นการรับส่งความถี่ 902 MHz ถึง 928 MHz, 2.14 MHz ถึง 2.484 และ 5.725 MHz ถึง 5.850 MHz สัญญาณจะมีกำลังต่ำ (โดยทั่วไปประมาณ 1 มิลลิวัตต์) และใช้ในการรับ-ส่งข้อมูลระหว่างต้นทางกับปลายทางเพียง 1 คู่เท่านั้น
    • Spread Spectrum Technology ระบบเครือข่ายไร้สายส่วนใหญ่นิยมใช้เทคนิค Spread Spectrum Technology ซึ่งใช้ความถี่ที่กว้างกว่า Narrow Band Technology ซึ่ง Spread Spectrum คือ ช่วงความถี่ระหว่าง 902-928 MHz และ 2.4-2.484 GHz โดยการส่งสัญญาณเทคนิค Spread Spectrum สามารถแบ่งได้เป็น 2 แบบคือ Direct Sequence และ Frequency-Hopping
    • Direct Sequence Spread Spectrum (DSSS) Direct Sequence Spread Spectrum เป็นเทคนิคที่ยังใช้คลื่นพาหะที่ต้องระบุความถี่ที่ใช้ โดยมันสามารถส่งข้อมูลได้มากกว่าแบบ Narrow Band วิธีนี้เป็นวิธีที่เหมาะกับสภาพแวดล้อมที่มีการแทรกสอดรบกวนจากคลื่นวิทยุอื่น ๆ อย่างรุนแรง
    • Frequency - Hopping Spread Spectrum (FHSS) การส่งสัญญาณรูปแบบนี้จะใช้ความถี่แคบพาหะเพียงความถี่เดียว (Narrow Band) โดยเน้นการนำไปใช้งาน ซึ่งจะเป็นตัวกำหนดว่า ถ้าคำนึงถึงปัญหาทางด้านประสิทธิภาพและคลื่นรบกวนก็ควรใช้ วิธี DSSS ถ้าต้องการใช้ Adapter ไร้สายขนาดเล็กและราคาไม่แพงสำหรับเครื่อง Notebook หรือเครื่อง PDA ก็ควรเลือกแบบ FHSS
    • Orthogonal Frequency Division Multiplex (OFDM) เทคนิคนี้ถูกนำมาใช้เพื่อเพิ่มความเร็วในการส่งข้อมูลตามมาตรฐานใหม่ ๆ ของระบบเครือข่ายไร้สาย คือ IEEE 802.11a และ 802.11g การส่งสัญญาณคลื่นวิทยุแบบนี้เป็นการ Multiplex สัญญาณโดยช่องสัญญาณความถี่จะถูกแบ่งออกเป็นความถี่พาหะย่อย (subcarrier) หลาย ๆ ความถี่ โดยแต่ละความถี่พาหะย่อยจะตั้งฉากซึ่งกันและกัน ทำให้มันเป็นอิสระต่อกัน ความถี่ที่คลื่นพาหะที่ตั้งฉากกันนั้นทำให้ไม่มีปัญหาการซ้อนทับของสัญญาณที่อยู่ติดกัน
  2. Infrared Technology ลำแสงอินฟราเรด (Infrared : IR) เป็นส่วนหนึ่งของสเปกตรัมแม่เหล็กไฟฟ้าอยู่ในย่านความถี่ของแสงที่อยู่ต่ำกว่าแสงสีแดงที่ตาของคนเราจะไม่สามารถมองเห็น ถูกนำมาใช้เพื่อการสื่อสารที่ใช้ในระยะใกล้ ได้แก่ อุปกรณ์ควบคุมแบบไร้สาย (Wireless Remote Control) ที่ควบคุมเครื่องรับโทรทัศน์ เครื่องเล่นวีดีโอ เครื่องคอมพิวเตอร์ Notebook คุณสมบัติเด่นของคลื่นอินฟราเรดและคลื่นสั้น คือ เดินทางเป็นแนวตรง ราคาถูก และง่ายต่อการผลิตใช้งาน แต่คลื่นประเภทนี้ไม่สามารถเดินทางผ่านวัตถุหรือสิ่งกีดขวางได้

อุปกรณ์ที่ใช้ในการติดต่อเครือข่ายไร้สาย

1. WLAN Adapters
เป็น Adapter แบบไร้สายซึ่งทำหน้าที่พื้นฐานคล้าย ๆ แบบใช้สายซึ่งมี Interface แบบ PCMCIA (Personal Computer Memory Card International Association), PCI (Peripheral Component Interconnect Cards), ISA (Industry Standard Architecture Cards), Cardbus และ USB มีหน้าที่ทำให้ผู้ใช้งานสามารถเข้าถึงโครงข่ายได้ ในเครือข่าย LAN แบบใช้สาย, Adapter เป็นตัว Interface ระหว่าง OS ของระบบเครือข่ายและสายสัญญาณ ส่วนในเครือข่าย WLAN จะทำหน้าที่เป็น Interface ระหว่าง OS ของระบบเครือข่ายกับเสาอากาศ เพื่อจะสร้างการเชื่อมต่อไปยังโครงข่ายอื่นต่อไป

 

2. Wireless Access Point
เป็นอุปกรณ์ที่ทำหน้าที่คล้าย Hub ของระบบ LAN แบบใช้สาย โดยที่มันจะรับเป็น Buffers และส่งข้อมูลระหว่าง WLAN และโครงสร้างแบบใช้สาย สนับสนุนการใช้งานของอุปกรณ์ไร้สายแบบเป็นกลุ่ม ซึ่งตัว Access Point มันจะเชื่อมต่อกับ Backbone ของโครงข่ายใช้สายผ่านมาตรฐานเคเบิลแบบ Ethernet และสื่อสารกับอุปกรณ์ไร้สายผ่านเสาอากาศ รัศมีของการเชื่อมต่อกับ Access Point เรียกเป็น Microcell มีระยะอยู่ที่ 20 เมตรถึง 500 เมตร และ Access Point หนึ่งตัวสนับสนุนผู้ใช้งานได้ 15 ถึง 250 คน

 

3. Outdoor Wireless Bridge
ใช้สำหรับเชื่อมต่อระบบเครือข่ายกับอาคารอื่น ๆ เนื่องจากค่าใช้จ่ายในการลากสาย Fiber Optic ระหว่างอาคารมีราคาสูง โดยเฉพาะถ้ามีสิ่งก่อสร้างขวางกั้นอยู่ด้วย เช่น ทางด่วน หรือแม่น้ำลำคลอง WLAN Bridge จึงเป็นทางเลือกที่น่าสนใจ มันให้อัตรารับ-ส่งข้อมูลสูง และมีรัศมีการรับส่งหลายไมล์ แต่ต้องอยู่ในลักษณะระดับสายตา line-of-sight





สถาปัตยกรรมของระบบเครือข่าย
    (Network Architecture) หรือโทโปโลยี (Topology) คือลักษณะทาง กายภาพ (ภายนอก) ของเครือข่ายซึ่งหมายถึง ลักษณะของการเชื่อมโยงสายสื่อสารเข้ากับอุปกรณ์อิเล็กทรอนิกส์ต่างๆ ภายในเครือข่ายด้วยกันนั่นเอง โทโปโลยีของเครือข่าย แต่ละแบบมีความเหมาะสมในการใช้งาน แตกต่างกัน จึงมีความจำเป็นที่เราจะต้องทำการศึกษาลักษณะและคุณสมบัติ ข้อดีและข้อเสียของโทโปโลยีแต่ละแบบ เพื่อนำไปใช้ในการ ออกแบบ พิจารณาเครือข่ายให้เหมาะสมกับการใช้งาน รูปแบบของโทโปโลยีของเครือข่ายหลักๆ มีดังต่อไปนี้
1. โทโปโลยีแบบบัส (Bus Topology)
    เป็นโทโปโลยีที่ได้รับความนิยมใช้กันมากที่สุดมาตั้งแต่อดีตจนถึงปัจจุบัน ลักษณะการทำงานของเครือข่าย โทโปโลยีแบบบัส คืออุปกรณ์ทุกชิ้นหรือโหนดทุกโหนด ในเครือข่ายจะต้องเชื่อมโยงเข้ากับสายสื่อสารหลักที่เรียกว่า"บัส" (BUS) เมื่อโหนดหนึ่งต้องการจะส่งข้อมูลไปให้ยังอีกโหนด หนึ่งภายในเครือข่าย จะต้องตรวจสอบให้แน่ใจก่อนว่าบัสว่างหรือไม่ ถ้าหากไม่ว่างก็ไม่สามารถจะส่งข้อมูลออกไปได้ ทั้งนี้เพราะสายสื่อสารหลักมีเพียงสายเดียว ในกรณีที่มีข้อมูลวิ่งมาในบัส ข้อมูลนี้จะวิ่งผ่านโหนดต่างๆ ไปเรื่อยๆ ในขณะที่แต่ละโหนดจะคอยตรวจสอบข้อมูลที่ผ่านมาว่าเป็นของตนเองหรือไม่ หากไม่ใช่ ก็จะปล่อยให้ข้อมูลวิ่งผ่านไป แต่หากเลขที่อยู่ปลายทาง ซึ่งกำกับมากับข้อมูลตรงกับเลขที่อยู่ของของตน โหนดนั้นก็จะรับข้อมูลเข้าไป

รูปที่ 1 โทโปโลยีแบบบัส
ข้อดีข้อเสียของโทโปโลยีแบบบัส
ข้อดี

1. ใช้สายส่งข้อมูลน้อยและมีรูปแบบที่ง่ายในการติดตั้ง ทำให้ลดค่าใช้จ่ายในการติดตั้งและบำรุงรักษา
2. สามารถเพิ่มอุปกรณ์ชิ้นใหม่เข้าไปในเครือข่ายได้ง่าย
ข้อเสีย
1. ในกรณีที่เกิดการเสียหายของสายส่งข้อมูลหลัก จะทำให้ทั้งระบบทำงานไม่ได้
2. การตรวจสอบข้อผิดพลาดทำได้ยาก ต้องทำจากหลาย ๆจุด
2. โทโปโลยีแบบวงแหวน (Ring Topology)
   เป็นการเชื่อมต่ออุปกรณ์ต่างๆ เข้ากันเป็นวงกลม ข้อมูลข่าวสารจะถูกส่งจากโหนดหนึ่งไปยังอีกโหนดหนึ่ง วนอยู่ในเครือข่ายไปใน ทิศทางเดียวเหมือนวงแหวน (ในระบบเครือข่ายรูปวงแหวนบางระบบสามารถส่งข้อมูลได้สองทิศทาง) ในแต่ละโหนดหรือสถานี จะมีรีพีตเตอร์ประจำโหนด 1 ตัว ซึ่งจะทำหน้าที่เพิ่มเติมข่าวสารที่จำเป็นต่อการ สื่อสาร ในส่วนหัวของแพ็กเกจข้อมูล สำหรับการส่งข้อมูลออกจากโหนด และมีหน้าที่รับแพ็กเกจข้อมูลที่ไหลผ่านมาจากสายสื่อสาร เพื่อตรวจสอบว่าเป็นข้อมูลที่ส่งมาให้โหนดตนหรือไม่ ถ้าใช่ก็จะคัดลอกข้อมูลทั้งหมดนั้นส่งต่อไปให้กับโหนดของตน แต่ถ้าไม่ใช่ก็จะปล่อยข้อมูลนั้นไปยังรีพีตเตอร์ของโหนดถัดไป
รูปที่ 2 โทโปโลยีรูปวงแหวน
ข้อดีข้อเสียของโทโปโลยีรูปวงแหวน
ข้อดี

1. การส่งข้อมูลสามารถส่งไปยังผู้รับหลาย ๆ โหนดพร้อมกันได้ โดยกำหนดตำแหน่งปลายทางเหล่านั้นลง ในส่วนหัวของแพ็กเกจข้อมูล รีพีตเตอร์ของแต่ละโหนดจะตรวจสอบเองว่ามีข้อมูลส่งมาให้ที่โหนดตนเองหรือไม่
2. การส่งข้อมูลเป็นไปในทิศทางเดียวกัน จึงไม่มีการชนกันของสัญญาณข้อมูล
ข้อเสีย

1. ถ้ามีโหนดใดโหนดหนึ่งเกิดเสียหาย ข้อมูลจะไม่สามารถส่งผ่านไปยังโหนดต่อไปได้ และจะทำให้เครือข่ายทั้ง เครือข่ายขาดการติดต่อสื่อสาร
2. เมื่อโหนดหนึ่งต้องการส่งข้อมูล โหนดอื่น ๆ ต้องมีส่วนร่วมด้วย ซึ่งจะทำให้เสียเวลา


3. โทโปโลยีรูปดาว (Star Topology)
   เป็นการเชื่อมโยงการติดต่อสื่อสารที่มีลักษณะคล้ายรูปดาว หลายแฉก โดยมีสถานีกลาง หรือฮับ เป็นจุดผ่านการติดต่อกันระหว่างทุกโหนดในเครือข่าย สถานีกลางจึงมีหน้าที่เป็นศูนย์ควบคุมเส้นทางการสื่อสาร ทั้งหมด นอกจากนี้สถานีกลางยังทำหน้าที่เป็นศูนย์กลางคอยจัดส่งข้อมูลให้กับโหนดปลายทางอีกด้วย การสื่อสารภายใน เครือข่ายแบบดาว จะเป็นแบบ 2 ทิศทางโดยจะอนุญาตให้มีเพียงโหนดเดียวเท่านั้นที่สามารถส่งข้อมูลเข้าสู่เครือข่ายได้ จึงไม่มีโอกาสที่หลายๆ โหนดจะส่งข้อมูลเข้าสู่เครือข่ายในเวลาเดียวกัน เพื่อป้องกันการชนกันของสัญญาณข้อมูล เครือข่ายแบบดาว เป็นโทโปโลยีอีกแบบหนึ่งที่เป็นที่นิยมใช้กันในปัจจุบัน

รูปที่ 3 โทโปโลยีแบบดาว
ข้อดีและข้อเสียของโทโปโลยีแบบดาว
ข้อดี

1. การติดตั้งเครือข่ายและการดูแลรักษาทำ ได้ง่าย
2. หากมีโหนดใดเกิดความเสียหายก็สามารถตรวจสอบได้ง่าย และเนื่องจากใช้อุปกรณ์ 1 ตัวต่อสายส่งข้อมูล 1 เส้น ทำให้การเสียหายของอุปกรณ์ใดในระบบไม่กระทบต่อการทำงานของจุดอื่นๆ ในระบบ
3. ง่ายในการให้บริการเพราะโทโปโลยีแบบดาวมีศูนย์กลางทำหน้าที่ควบคุม
ข้อเสีย
1. ถ้าสถานีกลางเกิดเสียขึ้นมาจะทำให้ทั้งระบบทำงานไม่ได้
2. ต้องใช้สายส่งข้อมูลจำนวนมากกว่าโทโปโลยีแบบบัส และ แบบวงแหวน
4. โทโปโลยีแบบผสม (Hybridge Topology)
   เป็นเครือข่ายการสื่อสารข้อมูลแบบผสมระหว่างเครือข่ายแบบใดแบบหนึ่งหรือมากกว่า เพื่อความถูกต้องแน่นอน ทั้งนี้ขึ้นอยู่กับความต้องการและภาพรวมขององค์กร